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Security risks in network systems

• Network systems rely on data collection and transmission
• Intelligent transportation systems (ITSs)
• Manufacturing systems (production lines)
• Communication networks

• Cyber components susceptible to data loss and data errors
• E.g., traffic sensors and traffic lights can be intruded and manipulated
• Need secure-by-design features
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Example: dynamic routing in ITSs
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Research questions

Modeling & analysis
• How to model stochastic & recurrent faults/attacks?
• How to quantify attacker’s incentive?
• How to quantify the impact due to faults/attacks?
• How to evaluate various security risks?

Resource allocation
• How to allocate limited/costly security resources, including 

redundant components, diagnosis mechanisms, etc.?

Decision making
• How to make protecting (resp. defending) decisions in the face 

of random faults (resp. malicious attacks)?
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Basic model
• Poisson arrivals of rate 𝜆
• Parallel servers with service rate 𝜇
• State: vector of queue lengths 

𝑋 𝑡 = [𝑋! 𝑡 , 𝑋" 𝑡 , … , 𝑋#(𝑡)]
• Dynamic routing: dynamically allocate jobs (e.g., customers, vehicles, 

components, data packets) to servers
• Provably optimal routing policy: join-the-shortest-queue (JSQ)[1]

• Existing works based on perfect observation of system state 𝑋(𝑡) and 
perfect implementation of dynamic routing
• Faulty/failed closed-loop can be worse than open-loop (e.g., round 

robin or Bernoulli routing)
• Research gap: designing fault-tolerant dynamic routing
[1] Ephremides, Anthony, P. Varaiya, and Jean Walrand. "A simple dynamic routing problem." IEEE 
transactions on Automatic Control 25.4 (1980): 690-693.

Parallel-queueing system
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• Reliability failures
• Random malfunction: operator fails to send routing instructions
• With constant probability 𝑎, a job joins a random queue

• Markov decision process
• Operator protects the routing with state-dependent probability 𝛽(𝑥)
• Minimize expected cumulative discounted queuing cost + tech cost

𝐽∗ 𝑥 = min% 𝔼[0
&

'
𝑒()*( 𝑋 𝑡 + 𝑐+𝛽 𝑋(𝑡) )𝑑𝑡|𝑋 0 = 𝑥]

Protection against reliability failures
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Defense against security failures

• Security failures
• Spoofing: attacker manipulates routing (e.g., send-to-longest-queue)

• Stochastic attacker-defender game (attacker side)
• Attacker attacks with state-dependent probability 𝛼(𝑥)
• Maximize expected cumulative discounted reward

𝑉,∗ 𝑥, 𝛽 = max- 𝔼[0
&

'
𝑒()*𝑅 𝑋 𝑡 𝑑𝑡|𝑋 0 = 𝑥]

where 𝑅 𝜉 = 𝜉 + 𝑐+𝛽 𝜉 − 𝑐.𝛼 𝜉
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Defense against strategic attacks (cont’d)

• Security failures
• Routing fails iff attacked and not defended (i.e., 𝛼 𝑥 = 1 & 𝛽 𝑥 = 0)

• Stochastic attacker-defender game (operator side)
• Defend the routing with state-dependent probability 𝛽(𝑥)
• Minimize expected cumulative discounted loss

𝑉/∗ 𝑥, 𝛼 = min% 𝔼[0
&

'
𝑒()*𝐶 𝑋 𝑡 𝑑𝑡|𝑋 0 = 𝑥]

where 𝐶 𝜉 = 𝜉 + 𝑐+𝛽 𝜉 − 𝑐.𝛼 𝜉
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Theorem 1. The parallel n-queue system with reliability failures is 
stable if for	any	non-diagonal	vector	𝑥,

𝛽 𝑥 > 1 −
𝜇|𝑥| − 𝜆𝑥!"#

𝑎𝜆(∑"$%# 𝑝"𝑥" − 𝑥!"#)
.

Theorem 2. The parallel n-queue system with security failures is 
stable if for	any	non-diagonal	vector	𝑥,

α 𝑥 1 − 𝛽 𝑥 <
𝜇|𝑥| − 𝜆𝑥!"#
𝜆(𝑥!&' − 𝑥!"#)

.

Proof sketch. Consider the quadratic Lyapunov function 𝑉 𝑥 =
%
(
∑"$%# 𝑥"( and apply the infinitesimal generator.

Stability criteria
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Stability criteria (cont’d)

Theorem 1. The parallel n-queue system with reliability failures is 
stable if for	any	non-diagonal	vector	𝑥,

𝛽 𝑥 > 1 −
𝜇|𝑥| − 𝜆𝑥!"#

𝑎𝜆(∑"$%# 𝑝"𝑥" − 𝑥!"#)
.

Characterization of the stabilizing threshold:
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𝑝! = 0.1, 𝑝" = 0.9, 𝜆 = 1.6, 𝜇 = 1, 𝑎 = 0.9



Theorem 3. Consider a parallel n-queue system with reliability 
failures. The optimal protecting policy 𝛽∗(𝑥) is threshold-based.
• Bang-bang control: operator either protects or does not protect (no 

probabilistic protection), i.e., 𝛽∗ 𝑥 ∈ {0,1}
• Operator needs to protect when 1) the queue lengths are less 

‘‘balanced’’; (2) the queues are close to empty
Proof idea: HJB equation and induction on value iteration.

Optimal protecting policy
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Numerical study

The incentive to protect is non-decreasing in the failure 
probability 𝑎, non-increasing in the tech cost 𝑐*, and non-
decreasing in the throughput 𝜆 (estimation of the optimal 
protecting policy is based on the truncated policy iteration).

2/3/24 Qian Xie (NYU, Cornell) 12

Tipping points when the operator starts to protect “riskier states”



Numerical study (cont’d)

Simulation result: the optimal closed-loop protecting policy 𝛽∗
performs better in terms of the cumulative cost, compared to the 
open-loop policies (benchmark) never defend and always defend.
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Definition. The equilibrium Markovian attacking (resp. defending) 
strategy 𝛼∗ (resp. 𝛽∗) satisfies that for any state 𝑥 ∈ ℤ+,# ,

𝛼∗(𝑥) = argmax- 𝑉.∗ 𝑥, 𝛽∗ ,
𝛽∗(𝑥) = argmin/ 𝑉0∗ 𝑥, 𝛼∗ .

Attacker’s (resp. defender’s) is 𝑉.∗ 𝑥, 𝛽∗ (resp. 𝑉0∗ 𝑥, 𝛼∗ ). In 
particular, (𝛼∗, 𝛽∗) is a Markovian perfect equilibrium (MPE).

Remark. According to Shapley’s extension on minimax theorem,
𝑉.∗ 𝑥, 𝛽∗ = 𝑉0∗ 𝑥, 𝛼∗ = 𝑉∗(𝑥)

Proof idea. Induction on value iteration.

Question. Existence of MPE? - Countable infinite state space!
Question. Estimation of MPE? - Adapted Shapley’s algorithm.

Attacker-defender game
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MPE analysis

Theorem 4. The MPE has four regimes depending on 𝑐&, 𝑐* and 
𝛿∗ 𝑥 = 𝜆(max

1
𝑉∗ 𝑥 + 𝑒1 −min1 𝑉∗ 𝑥 + 𝑒1 ). For each MPE, the state 

space is divided into subsets with different security risk levels:
• 𝑆% = {𝑥|(𝛼∗ 𝑥 , 𝛽∗ 𝑥 ) = 0, 0 } (low risk)
• 𝑆( = {𝑥|(𝛼∗ 𝑥 , 𝛽∗ 𝑥 ) = 1, 0 }(medium risk)
• 𝑆2 = {𝑥|(𝛼∗ 𝑥 , 𝛽∗ 𝑥 ) = ( 3!

4∗(')
, 1 − 3#

4∗(')
)} (high risk)
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MPE analysis (cont’d)

Theorem 4. The MPE has the following regimes depending on 𝑐&,
𝑐* and 𝛿∗ 𝑥 = 𝜆(max

1
𝑉∗ 𝑥 + 𝑒1 −min1 𝑉∗ 𝑥 + 𝑒1 )

• 𝛿∗(𝑥) ≤ 𝑐& ⇒ 𝑆% = {𝑥|(𝛼∗ 𝑥 , 𝛽∗ 𝑥 ) = 0, 0 } (low risk)
• 𝑐& < 𝛿∗(𝑥) ≤ 𝑐* ⇒ 𝑆( = {𝑥|(𝛼∗ 𝑥 , 𝛽∗ 𝑥 ) = 1, 0 }(medium risk)
• 𝛿∗(𝑥) ≥ max(𝑐&, 𝑐*) > 0 ⇒ 𝑆2 = {𝑥|(𝛼∗ 𝑥 , 𝛽∗ 𝑥 ) = ( 3!

4∗(')
, 1 − 3#

4∗(')
)}

The equilibrium strategies 𝛼∗ , 𝛽∗ are both threshold-based.
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Conclusion

• Without secure dynamic routing, random faults and malicious 
attacks can destabilize the queueing system 

• The optimal protecting strategy and the equilibrium of attacker-
defender game have threshold-properties

• The system operator has higher incentive to protect when 
• the failure probability is higher
• the tech cost is lower
• the throughput is higher
• the queue lengths are less ‘‘balanced’’
• the queues are close to empty

• Our proposed optimal protecting policy (closed-loop) performs 
better than the benchmark (open-loop)

• Optimal protecting strategy (resp. equilibrium) can be estimated 
by truncated policy iteration (resp. adapted Shapley’s algorithm)
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